10 research outputs found

    Dyskeratosis Congenita links telomere attrition to age-related systemic energetics.

    Get PDF
    Underlying mechanisms of plasma metabolite signatures of human ageing and age-related diseases are not clear but telomere attrition and dysfunction are central to both. Dyskeratosis Congenita (DC) is associated with mutations in the telomerase enzyme complex (TERT, TERC, and DKC1) and progressive telomere attrition. We analyzed the effect of telomere attrition on senescence associated metabolites in fibroblast conditioned media and DC patient plasma. Samples were analyzed by gas chromatography/ mass spectrometry and liquid chromatography/ mass spectrometry. We showed extracellular citrate was repressed by canonical telomerase function in vitro and associated with DC leukocyte telomere attrition in vivo; leading to the hypothesis that altered citrate metabolism detects telomere dysfunction. However, elevated citrate and senescence factors only weakly distinguished DC patients from controls, whereas elevated levels of other tricarboxylic acid cycle metabolites, lactate and especially pyruvate distinguished them with high significance. The DC plasma signature most resembled that of patients with loss of function pyruvate dehydrogenase complex mutations and that of older subjects but significantly not those of type 2 diabetes, lactic acidosis, or elevated mitochondrial reactive oxygen species (1-3). Additionally, our data are consistent with further metabolism of citrate and lactate in the liver and kidneys. Citrate uptake in certain organs modulates age-related disease in mice and our data has similarities with age-related disease signatures in humans. Our results have implications for the role of telomere dysfunction in human ageing in addition to its early diagnosis and the monitoring of anti-senescence therapeutics, especially those designed to improve telomere function

    Ion-pairing chromatography and amine derivatization provide complementary approaches for the targeted LC-MS analysis of the polar metabolome.

    Get PDF
    Liquid chromatography coupled to mass spectrometry is a key metabolomics/metabonomics technology. Reversed-phase liquid chromatography (RPLC) is very widely used as a separation step, but typically has poor retention of highly polar metabolites. Here, we evaluated the combination of two alternative methods for improving retention of polar metabolites based on 6-aminoquinoloyl-N-hydroxysuccinidimyl carbamate derivatization for amine groups, and ion-pairing chromatography (IPC) using tributylamine as an ion-pairing agent to retain acids. We compared both of these methods to RPLC and also to each other, for targeted analysis using a triple-quadrupole mass spectrometer, applied to a library of ca. 500 polar metabolites. IPC and derivatization were complementary in terms of their coverage: combined, they improved the proportion of metabolites with good retention to 91%, compared to just 39% for RPLC alone. The combined method was assessed by analyzing a set of liver extracts from aged male and female mice that had been treated with the polyphenol compound ampelopsin. Not only were a number of significantly changed metabolites detected, but also it could be shown that there was a clear interaction between ampelopsin treatment and sex, in that the direction of metabolite change was opposite for males and females

    Dyskeratosis Congenita links telomere attrition to age-related systemic energetics

    Get PDF
    Supplementary data: glad018_suppl_Supplementary_Material - docx file available online at: https://academic.oup.com/biomedgerontology/advance-article/doi/10.1093/gerona/glad018/6991261#supplementary-data .Copyright © The Author(s) 2023. Underlying mechanisms of plasma metabolite signatures of human ageing and age-related diseases are not clear but telomere attrition and dysfunction are central to both. Dyskeratosis Congenita (DC) is associated with mutations in the telomerase enzyme complex (TERT, TERC, and DKC1) and progressive telomere attrition. We analyzed the effect of telomere attrition on senescence associated metabolites in fibroblast conditioned media and DC patient plasma. Samples were analyzed by gas chromatography/ mass spectrometry and liquid chromatography/ mass spectrometry. We showed extracellular citrate was repressed by canonical telomerase function in vitro and associated with DC leukocyte telomere attrition in vivo; leading to the hypothesis that altered citrate metabolism detects telomere dysfunction. However, elevated citrate and senescence factors only weakly distinguished DC patients from controls, whereas elevated levels of other tricarboxylic acid cycle metabolites, lactate and especially pyruvate distinguished them with high significance. The DC plasma signature most resembled that of patients with loss of function pyruvate dehydrogenase complex mutations and that of older subjects but significantly not those of type 2 diabetes, lactic acidosis, or elevated mitochondrial reactive oxygen species (1-3). Additionally, our data are consistent with further metabolism of citrate and lactate in the liver and kidneys. Citrate uptake in certain organs modulates age-related disease in mice and our data has similarities with age-related disease signatures in humans. Our results have implications for the role of telomere dysfunction in human ageing in addition to its early diagnosis and the monitoring of anti-senescence therapeutics, especially those designed to improve telomere function.The work was supported by the Dunhill Medical Trust (grant number R452/1115) and Barts and the London Charity (grant number MRD&U0004) and Euorpean Union H2020, grant number 633589. Karen-Ng Lee Peng received a Ph.D. scholarship (Hadiah Latihan Persekutuan) from the Malaysian Ministry of Education

    Epigenetic and metabolic reprogramming of fibroblasts in Crohn's disease strictures reveals histone deacetylases as therapeutic targets.

    Get PDF
    BACKGROUND & AIMS: No effective therapeutic intervention exists for intestinal fibrosis in Crohn's disease [CD]. We characterised fibroblast subtypes, epigenetic and metabolic changes, and signalling pathways in CD fibrosis to inform future therapeutic strategies. METHODS: We undertook immunohistochemistry, metabolic, signalling pathway and Epigenetic [Transposase-Accessible Chromatin using sequencing] analyses associated with collagen production in CCD-18Co intestinal fibroblasts and primary fibroblasts isolated from stricturing [SCD] and non-stricturing [NSCD] CD small intestine. SCD/ NSCD fibroblasts were cultured with TGFβ and valproic acid [VPA]. RESULTS: Stricturing CD was characterised by distinct histone deacetylase [HDAC] expression profiles, particularly HDAC1, HDAC2, and HDAC7. As a proxy for HDAC activity, reduced numbers of H3K27ac+ cells were found in SCD compared to NSCD sections. Primary fibroblasts had increased extracellular lactate [increased glycolytic activity] and intracellular hydroxyproline [increased collagen production] in SCD compared to NSCD cultures. The metabolic effect of TGFβ-stimulation was reversed by the HDAC inhibitor VPA. SCD fibroblasts appear "metabolically primed" and responded more strongly to both TGFβ and VPA. Treatment with VPA revealed TGFβ-dependent and independent Collagen-I production in CCD-18Co cells and primary fibroblasts. VPA altered the epigenetic landscape with reduced chromatin accessibility at the COL1A1 and COL1A2 promoters. CONCLUSIONS: Increased HDAC expression profiles, H3K27ac hypoacetylation, a significant glycolytic phenotype, and metabolic priming, characterise SCD-derived as compared to NSCD fibroblasts. Our results reveal a novel epigenetic component to Collagen-I regulation and TGFβ-mediated CD fibrosis. HDAC inhibitor therapy may 'reset' the epigenetic changes associated with fibrosis

    Association between urinary biomarkers of total sugars intake and measures of obesity in a cross-sectional study

    Get PDF
    Obesity is an important modifiable risk factor for chronic diseases. While there is increasing focus on the role of dietary sugars, there remains a paucity of data establishing the association between sugar intake and obesity in the general public. The objective of this study was to investigate associations of estimated sugar intake with odds for obesity in a representative sample of English adults. We used data from 434 participants of the 2005 Health Survey of England. Biomarkers for total sugar intake were measured in 24 h urine samples and used to estimate intake. Linear and logistic regression analyses were used to investigate associations between biomarker-based estimated intake and measures of obesity (body mass intake (BMI), waist circumference and waist-to-hip ratio) and obesity risk, respectively. Estimated sugar intake was significantly associated with BMI, waist circumference and waist-to-hip ratio; these associations remained significant after adjustment for estimated protein intake as a marker of non-sugar energy intake. Estimated sugar intake was also associated with increased odds for obesity based on BMI (OR 1.02; 95%CI 1.00-1.04 per 10g), waist-circumference (1.03; 1.01-1.05) and waist-to-hip ratio (1.04; 1.02-1.06); all OR estimates remained significant after adjusting for estimated protein intake. Our results strongly support positive associations between total sugar intake, measures of obesity and likelihood of being obese. It is the first time that such an association has been shown in a nationally-representative sample of the general population using a validated biomarker. This biomarker could be used to monitor the efficacy of public health interventions to reduce sugar intake

    Express Attentional Re-Engagement but Delayed Entry into Consciousness Following Invalid Spatial Cues in Visual Search

    Get PDF
    Background: In predictive spatial cueing studies, reaction times (RT) are shorter for targets appearing at cued locations (valid trials) than at other locations (invalid trials). An increase in the amplitude of early P1 and/or N1 event-related potential (ERP) components is also present for items appearing at cued locations, reflecting early attentional sensory gain control mechanisms. However, it is still unknown at which stage in the processing stream these early amplitude effects are translated into latency effects. Methodology/Principal Findings: Here, we measured the latency of two ERP components, the N2pc and the sustained posterior contralateral negativity (SPCN), to evaluate whether visual selection (as indexed by the N2pc) and visual-short term memory processes (as indexed by the SPCN) are delayed in invalid trials compared to valid trials. The P1 was larger contralateral to the cued side, indicating that attention was deployed to the cued location prior to the target onset. Despite these early amplitude effects, the N2pc onset latency was unaffected by cue validity, indicating an express, quasiinstantaneous re-engagement of attention in invalid trials. In contrast, latency effects were observed for the SPCN, and these were correlated to the RT effect. Conclusions/Significance: Results show that latency differences that could explain the RT cueing effects must occur after visual selection processes giving rise to the N2pc, but at or before transfer in visual short-term memory, as reflected by th

    Dyskeratosis Congenita links telomere attrition to age-related systemic energetics.

    No full text
    Underlying mechanisms of plasma metabolite signatures of human ageing and age-related diseases are not clear but telomere attrition and dysfunction are central to both. Dyskeratosis Congenita (DC) is associated with mutations in the telomerase enzyme complex (TERT, TERC, and DKC1) and progressive telomere attrition. We analyzed the effect of telomere attrition on senescence associated metabolites in fibroblast conditioned media and DC patient plasma. Samples were analyzed by gas chromatography/ mass spectrometry and liquid chromatography/ mass spectrometry. We showed extracellular citrate was repressed by canonical telomerase function in vitro and associated with DC leukocyte telomere attrition in vivo; leading to the hypothesis that altered citrate metabolism detects telomere dysfunction. However, elevated citrate and senescence factors only weakly distinguished DC patients from controls, whereas elevated levels of other tricarboxylic acid cycle metabolites, lactate and especially pyruvate distinguished them with high significance. The DC plasma signature most resembled that of patients with loss of function pyruvate dehydrogenase complex mutations and that of older subjects but significantly not those of type 2 diabetes, lactic acidosis, or elevated mitochondrial reactive oxygen species (1-3). Additionally, our data are consistent with further metabolism of citrate and lactate in the liver and kidneys. Citrate uptake in certain organs modulates age-related disease in mice and our data has similarities with age-related disease signatures in humans. Our results have implications for the role of telomere dysfunction in human ageing in addition to its early diagnosis and the monitoring of anti-senescence therapeutics, especially those designed to improve telomere function

    Nonferrous metallurgy. II. Zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, and tungsten

    No full text
    corecore